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Abstract
Considering the magnetic ordering observed in Fe1−x Cox Si compounds, the
inhomogeneity effect on the Curie temperature of the inhomogeneous system
is studied by using the coherent potential approximation. In the model system
introduced in the present study, the magnetically ordered state can be realized in
a finite concentration range between the insulating spin gap state corresponding
to FeSi and the metallic paramagnetic state corresponding to CoSi. The
concentration dependences of the density of states and Curie temperature are
the main focuses of investigation. The density of states at the Fermi level is
strongly suppressed by the inhomogeneity effect. The suppression of the density
of states also leads to suppression of the transition temperature. Although the
electron correlation effect generally suppresses the Curie temperature similarly,
the inhomogeneity effect on the suppression of the transition temperature cannot
be replaced with the correlation effect of the effective Coulomb interactions.

Fe1−x Cox Si compounds show interesting magnetism and they have been studied for a few
decades [1–3]. FeSi has attracted interest as one of the Kondo insulators among 3d transition-
metal compounds [4, 5], and the ground state of the compound is non-magnetic. On the
other hand, the ground state of CoSi is diamagnetic. Neither of these compounds has any
magnetic ordering. However, Fe1−x Cox Si (0.1 � x � 0.7) compounds are magnetically
ordered. By using the spin fluctuation theory [6], this interesting magnetism of Fe1−x Cox Si
was studied in [7]. In that study, the authors calculated the temperature dependence of the
spin susceptibility and obtained the Curie temperature. Taking into account the effect of the
spin fluctuation, they succeeded in obtaining a value of the Curie temperature that was more
realistic than that obtained by using the random phase approximation.

However, they treated the density of states using the rigid-band approximation; they did not
take account of the inhomogeneity effect accurately. In the present letter, in order to investigate
the inhomogeneity effect on the magnetism of compounds more effectively, we apply the
coherent potential approximation (CPA) to a system corresponding to Fe1−x Cox Si compounds.
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Since we concentrate on the inhomogeneity effect, we do not take the spin fluctuation into
account; we apply the Hartree–Fock approximation to treat the many-body interaction.

In a practical calculation, one needs to assume a band structure for the system. According
to the study via a band calculation [8], the form of the DOS of FeSi is very similar to that of
the DOS of CoSi, and there seems to be a difference only as regards the position of the Fermi
level in the density of states of each compound; in the DOS of FeSi the Fermi level sits in the
gap, and the DOS at the Fermi level is finite in the case of CoSi. Therefore, in the present
study, we assume that the form of the DOS for x = 0 corresponding to FeSi is the same as that
for x = 1 corresponding to CoSi, and the difference in DOS between two systems for x = 0
and 1 appears only in the energy level of each DOS.

The Hamiltonian that we treat in the present study is as follows:

H = H0 + Hsite,

where

H0 ≡
∑
k,σ

(εk − µσ )c†
kσ ckσ , (1)

Hsite ≡
∑
i,σ

{ξiεA + (1 − ξi )εB}c†
iσ ciσ +

∑
i

{ξiUA + (1 − ξi )UB}c†
i↑ci↑c†

i↓ci↓, (2)

where ξi denotes a random variable defined as ξi = 1 (i ∈ A) and 0 (i ∈ B), and the
concentration x is defined as x ≡ ∑

i ξi/N ; N denotes the number of lattice sites. The
Zeeman energy is included in µσ as µσ ≡ µ + gµB Hσ/2 ≡ µ + hσ (σ = ±1). Since we
assume that the form of the DOS for x = 0 is same as that for x = 1 as mentioned above,
the dispersion εk is assumed not to depend on x and the difference of A and B sites appears
in the energy level difference of εA and εB. It is also assumed that UA (B) is independent of
the concentration x . These assumption and the model Hamiltonian were also used in [9] to
study ferromagnetic alloys. Following [9], we apply the Hartree–Fock approximation to the
Coulomb interaction term in the Hamiltonian (2), and then the Hartree–Fock Hamiltonian is
obtained as follows:

HHF
site =

∑
i,σ

{ξiε
HF
Aσ + (1 − ξi )ε

HF
Bσ }c†

iσ ciσ −
∑

i

{ξi UAnA↑nA↓ + (1 − ξi )UBnB↑nB↓}, (3)

where nA (B)σ denotes the expectation value of the electron density with σ at the A (B) site.
The Hartree term is included in εHF

A (B)σ as εHF
A (B)σ ≡ εA (B) + UA (B)nA (B)−σ .

Applying the CPA to the present system by introducing the coherent potential Sσ (iεn), the
CPA condition is expressed as the following equation [9]:

x
εHF

Aσ − Sσ (iεn)

1 − GCPA
σ (iεn)(ε

HF
Aσ − Sσ (iεn))

+ (1 − x)
εHF

Bσ − Sσ (iεn)

1 − GCPA
σ (iεn)(ε

HF
Bσ − Sσ (iεn))

= 0, (4)

where εn denotes the Matsubara energy εn = (2n + 1)πT at temperature T . The CPA Green
function GCPA

σ (iεn) and the total DOS ρσ (ε) of the system are expressed as

GCPA
σ (iεn) =

∫
dν

ρ0(ν)

iεn + µσ − ν − Sσ (iεn)
, (5)

ρσ (ε) = − 1

π
Im GCPA

σ (ε + iδ), (6)

where ρ0(ν) is the non-interacting DOS. We assume the form of the DOS for the non-interacting
homogeneous system instead of the band structure itself in the present study. Considering the
band structure obtained in the band calculation study [8], we assume an artificial form of the
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non-interacting DOS that has a gap and a sharp peak near the gap as follows:

ρ0(ν) = 1

2

V 2 + (ν − εf)
2

(ν − εf)2
g

(
ν − V 2

ν − εf

)
, (7)

g(x) = 1√
2πW 2

exp

(
− x2

2W 2

)
, (8)

where ν �= εf and ρ0(ν) = 0 in the case ν = εf . The above form of the non-interacting DOS
comes from the DOS with the hybridization gap in the periodic Anderson model which has
the hybridization V between conduction electrons and f electrons with the energy level εf .
Note that we introduce the above artificial form (7) in order to realize the structure which has
a gap and a sharp peak near the gap, and also note that the values V and εf themselves have no
physical meaning in the present model. We use the Gaussian form (8) in the non-interacting
DOS (7) for convenience as regards the numerical integral. In the practical calculation, we
take the width of the Gaussian as the energy unit (W = 1), and set V = 0.8 and εf = 1. For
simplicity, we assume the values of UA and UB to be the same, and this same value is denoted
by U : U = UA = UB.

Here let us comment on the determination of the values εA and εB. Obviously, the absolute
values of εA and εB are not important, but the relative value εA − εB is crucial. Thus, for
simplicity, we set εB ≡ 0. Assuming that the pure B system (x = 0) corresponds to FeSi
which has a gap at the Fermi level, we determine the electron density at B sites for x = 0 such
that the Fermi level ε0

F(x = 0) sits in the gap for the non-interacting case; for the present model,
we obtain nB(x = 0) ≡ ∑

σ nBσ (x = 0) = 1 from the non-interacting DOS (7). In the case
x = 1, which corresponds to CoSi, the electron density at A sites for x = 1 should be more than
nB(x = 0); we assume nA(x = 1) ≡ ∑

σ nAσ (x = 1) = 1.8 in the practical calculation. We
determine the value of εA such that the Fermi level ε0

F(x = 1) for x = 1 is equal to ε0
F(x = 0)

for x = 0; the value of εA is obtained as εA � −0.725 for the present model. Finally, the model
parameters εA, εB, nA(x = 1), and nB(x = 0) are determined. In the practical calculation,
for given values of U and x , we calculate the HF-CPA condition (4) and obtain the value of
the Fermi level εF(x) (or the chemical potential µ(x)) at temperature T such that the total
density ntot(x) ≡ xnA(x) + (1 − x)nB(x) is equal to xnA(x = 1) + (1 − x)nB(x = 0), which
is expressed as 1.8x + (1 − x) = 0.8x + 1 in the present model. The electron density nA (B)σ

at each site A (or B) is obtained from the site-dependent Green function:

GA (B)σ (iεn) = GCPA
σ (iεn)

1 − GCPA
σ (iεn)(ε

HF
A (B)σ − Sσ (iεn))

, (9)

nA (B)σ =
∫

dε ρA (B)σ (ε) f (ε) (10)

≡
∫

dε

(
− 1

π
Im GA (B)σ (ε + iδ)

)
f (ε), (11)

f (ε) = 1

eβε + 1
, (12)

where β = 1/T . The coherent potential Sσ (iεn) can be expressed by using the CPA
condition (4) and the definition of the site-dependent Green function (9) as

Sσ (iεn) = xGAσ (iεn)ε
HF
Aσ + (1 − x)GBσ (iεn)ε

HF
Bσ

xGAσ (iεn) + (1 − x)GBσ (iεn)
. (13)

Here we summarize the self-consistent procedure used to calculate the CPA Green function
and the site-dependent Green function. First, we introduce some adequate input for the site-
dependent Green function. We denote the input Green function as an ‘OLD’ one: GOLD

A (B)σ .
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Next we calculate the electron density nA (B)σ at A (B) sites from GOLD
A (B)σ using (10). Then,

using the electron density nA (B)σ , we determine the value of εHF
A (B)σ including the Hartree

term. The coherent potential Sσ is obtained by using (13), and the CPA Green function GCPA
σ

is calculated from (5). Finally, we obtain the output of the site-dependent Green function
denoted as a ‘NEW’ one: GNEW

A (B)σ , using the relation (9). The OLD GOLD
A (B)σ and the NEW

GNEW
A (B)σ are compared with each other, and the self-consistent calculation is repeated until they

converge. After the convergence, we obtain self-consistent solutions for the Green functions
and the coherent potential. Hereafter, we omit the spin indices of the quantities obtained from
paramagnetic solutions. In the scheme with the Hartree–Fock approximation, we can obtain
the magnetic susceptibility from paramagnetic solutions by expanding all quantities in the first
order of h [9]. The total magnetic susceptibility χs(T ) is expressed in terms of the partial
magnetic susceptibility χA (B)(T ) as

χs(T ) = xχA(T ) + (1 − x)χB(T ). (14)

The partial magnetic susceptibilities are expressed as follows:(
χA

χB

)
= 1

D

(
1 − Uχ0

B + UYA UYB

UYA 1 − Uχ0
A + UYB

) (
χ0

A

χ0
B

)
, (15)

D ≡
∣∣∣∣ 1 − Uχ0

A + UYB −UYB

−UYA 1 − Uχ0
B + UYA

∣∣∣∣ , (16)

YA (B) ≡ − 1

π

∫
dε Im

[ {(GCPA(ε + iδ))2 − H (ε + iδ)}KA (B)(ε + iδ)

{1 − (εHF
B (A) − S(ε + iδ))GCPA(ε + iδ)}2

]
f (ε), (17)

H (iεn) ≡
∫

dν
ρ0(ν)

(iεn + µ − ν − S(iεn))2
= −

∫
dν

1

iεn + µ − ν − S(iεn)

dρ0 (ν)

dν
, (18)

KA(iεn) ≡ x − (εHF
B − S(iεn))GCPA(iεn)

1 − (εHF
A + εHF

B − 2S(iεn))GCPA(iεn) + (εHF
A − S(iεn))(ε

HF
B − S(iεn))H (iεn)

,

(19)

KB(iεn) ≡ 1 − x − (εHF
A − S(iεn))GCPA(iεn)

1 − (εHF
A + εHF

B − 2S(iεn))GCPA(iεn) + (εHF
A − S(iεn))(ε

HF
B − S(iεn))H (iεn)

.

(20)

The above relations, equations (14)–(20), were first derived in [9]. We follow these relations
and calculate the magnetic susceptibility and determine the Curie temperature TC.

Let us show the numerical results. Figure 1 shows the dependence on the concentration
(x) of the total DOS ρ(ε). In the case x = 0, the Fermi level sits in the gap of the DOS
and the system become insulating; this corresponds to the FeSi case. We can obviously see
that the form of the DOS changes drastically with changing x and does not simply shift. Of
course, the total electron density ntot(x) increases linearly with increasing x , since the Fermi
level is determined such that ntot(x) is equal to xnA(x = 1) + (1 − x)nB(x = 0) (which is
equal to 0.8x + 1 in the present calculation). However, one can see that the concentration
dependence of the partial electron density at A or B sites, nA (B)(x), is not simple (see the inset
of figure 1(a)). For x � 0.5, the DOS loses the peak structure, and the DOS at the Fermi level
is strongly suppressed compared to that obtained by the rigid-band approximation (figure 2).
This strong suppression is caused by inhomogeneity of the system. Let us see the concentration
dependence of the coherent potential, indicating inhomogeneity. Figures 3(a) and (b) show the
concentration dependence of the imaginary part Im S(ε + iδ) of the coherent potential. With
x increasing from x = 0 to 0.5 or with x decreasing from x = 1 to 0.5, the absolute value of
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Figure 1. (a) The concentration dependence of the total DOS ρ(ε) from x = 0 to 1 in intervals
of 0.1 (U = 2 and T = 0). The inset shows the concentration dependence of the electron density
nA (B)(x) at A (B) sites. The lower panel (b) shows an enlargement around the Fermi level (ε = 0).

Im S(ε + iδ) increases overall, as expected. In particular, one can see that the suppression of
the DOS at the Fermi level is the strongest, since the imaginary part of the coherent potential
around ε = 0 is the most enhanced. It is also confirmed that the real part Re S(ε + iδ) of the
coherent potential approaches εHF

A and εHF
B for x = 1 and 0, respectively, in figure 3(c).

Next we turn to the magnetic susceptibility. Figure 4 shows the temperature dependence
of the magnetic susceptibility for several values of x (0 � x � 1). For x = 0, the system has
a gap and the magnetic susceptibility decreases exponentially as temperature decreases. For
low concentration, the magnetic susceptibility has an upturn at lower temperature. This upturn
becomes a divergence for x � 0.09; the ground state of the system becomes ferromagnetic.
At the other end of the concentration range, x = 1, the divergence of the susceptibility
disappears and the susceptibility at the lowest temperature has a finite value. Needless to
say, this finite value corresponds to Pauli paramagnetism enhanced by the Stoner factor
1/(1 − UρA(0; x = 1)) = 1/(1 − Uρ(0; x = 1)); one can confirm that the value of the
susceptibility χs(T = 0) at absolute zero for x = 1 (all sites are A sites) is consistent with
ρ(0; x = 1)/(1 − Uρ(0; x = 1)). The inverse 1/χs(T ) of the susceptibility is also shown
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Figure 2. Comparison of the concentration dependence of the total DOS ρ(0) at the Fermi level
calculated by using the CPA and that calculated by using the rigid-band approximation (U = 2 and
T = 0).

in the inset of figure 4. The temperature dependence of 1/χs(T ) at higher temperature seems
to be linear in T . In fact, the temperature dependence of 1/χs(T ) obtained by using the
Hartree–Fock approximation is not linear, but rather proportional to T 2 − T 2

C . However, if
T − TC � TC (T > TC), the inverse of the susceptibility is proportional to 2TC(T − TC); the
apparent linearity of 1/χs(T ) is seen only at T � TC.

The concentration dependence of the Curie temperature is shown in figure 5. For
comparison, we also show some results obtained using the rigid-band approximation for several
values of U . As might be expected, the inhomogeneity suppresses the Curie temperature;
values of the Curie temperature calculated using the present CPA scheme are lower than those
obtained using the rigid-band calculation for all x . The suppression of the Curie temperature
is related to the suppression of the DOS and the enhancement of the imaginary part of the
coherent potential.

This situation is similar to that for the suppression of Curie temperature by the electron
correlation effect; it is well known that the correlation effect generally suppresses the Curie
temperature1. In order to see the relation between the inhomogeneity effect and the correlation
effect on the suppression of the transition temperature,we compare the present result calculated
using the CPA with that obtained by using the rigid-band approximation. In the results
obtained by using the rigid-band approximation, one can see a systematic enhancement
of the Curie temperature with increasing U for all x . The electron correlation effect on
the Curie temperature can be described in terms of the renormalized effective Coulomb
interaction [10]. Thus, if the inhomogeneity effect on the suppression of the transition
temperature is replaceable with the correlation effect, the concentration dependence of the
transition temperature calculated by using the CPA should be consistent with that obtained by
using the rigid-band approximation for some effective Coulomb interaction Ũ . In other words,
denoting the transition temperature calculated by using the CPA in the system for U and x
as T CPA

C (U ; x) and that calculated by using the rigid-band approximation as T RBA
C (U ; x), an

effective value Ũ of the Coulomb interaction such that T CPA
C (U ; x) = T RBA

C (Ũ ; x) for all x
should exist. We can see that the concentration dependence cannot be described by a rigid-
band approximation with an appropriate effective Coulomb interaction Ũ : we can see that the
relation T RBA

C (U = 1.5; x) < T CPA
C (U = 2.0; x) < T RBA

C (U = 2.0; x) does not hold for
lower concentrations.

1 The Hartree–Fock approximation without account taken of the correlation effect generally gives an unrealistically
high Curie temperature.
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Figure 3. (a) The concentration dependence of the imaginary part Im S(ε + iδ) of the coherent
potential from x = 0.1 to 0.5 in intervals of 0.1 (U = 2 and T = 0). (b) Im S(ε + iδ) from x = 0.5
to 0.9 in intervals of 0.1 (U = 2 and T = 0). (c) The concentration dependence of the real part
Re S(ε + iδ) of the coherent potential from x = 0.1 to 0.9 in intervals of 0.1 (U = 2 and T = 0).
Thin solid curves indicate εHF

A (upper) and εHF
B (lower) for U = 2, respectively.

In summary, considering Fe1−x CoxSi, we have mainly concentrated on calculating the
concentration dependence of the Curie temperature and the DOS of the inhomogeneous system
in which there are two kinds of site with different energy levels, by using the CPA, and have
investigated the inhomogeneity effect on the transition temperature.

(1) The form of the DOS changes drastically as the concentration changes. In particular, the
DOS at the Fermi level is strongly suppressed by the inhomogeneity.

(2) The transition temperature is also suppressed. There are two points that should be
emphasized. The first is that the effect of the inhomogeneity on the suppression of the
transition temperature cannot be described in terms of an effective Coulomb interaction.
The second is that the simple Stoner criterion cannot be applied to the inhomogeneous
system. The DOS at the Fermi level, which is used in the simple Stoner criterion,
is suppressed by the inhomogeneity. Also, the extended Stoner criterion derived from
equations (14), (15), and (16) should be applied to the inhomogeneous system.
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Figure 4. The temperature dependence of the magnetic susceptibility χS(T ) for several values of x
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susceptibility.
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Figure 5. The concentration dependence of the Curie temperature calculated by using the CPA
(U = 2). For comparison, results obtained by using the rigid-band approximation for several
values of U (U = 1, 1.5, and 2) are also shown.

Concerning the intermediate concentrations of Fe1−x Cox Si compounds, if the rigid-band
approximation is assumed, the DOS at the Fermi level is high enough for the appearance
of ferromagnetism in the Stoner criterion. In the inhomogeneous system, however, it should
be noted that the DOS is suppressed by the inhomogeneity effect, and the apparent height of the
DOS at the Fermi level cannot be used even in the simple Stoner criterion. This inhomogeneity
effect on the magnetism should also be important in investigating magnetic properties of other
compounds. In a recent study of the magnetic transition observed in FeSi1−x Gex , for example, it
was expected that the transition temperature would be more suppressed by the inhomogeneity
effect if the CPA-type treatment was applied to the system, although in fact the rigid-band
approximation was assumed in the study [11].
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